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A cascadic conjugate gradient algorithm for mass conservative,
semi-implicit discretization of the shallow water equations

on locally re�ned structured grids
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SUMMARY

A semi-implicit, mass conservative discretization scheme is applied to the two-dimensional shallow water
equations on a hierarchy of structured, locally re�ned Cartesian grids. Di�erent resolution grids are fully
interacting and the discrete Helmholtz equation obtained from the semi-implicit discretization is solved
by the cascadic conjugate gradient method. A �ux correction is applied at the interface between the
coarser and �ner discretization grids, so as to ensure discrete mass conservation, along with symmetry
and diagonal dominance of the resulting matrix. Two-dimensional idealized simulations are presented,
showing the accuracy and the e�ciency of the resulting method. Copyright ? 2002 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

In many numerical models for environmental applications, semi-implicit time discretization
is employed in order to improve computational e�ciency. This approach has proven to be
quite successful in areas such as coastal hydrodynamics and meteorological modelling (see e.g.
References [1–4]). Semi-implicit time discretization leads to the formulation of a Helmholtz
equation that must be solved numerically at each time step. Therefore, the computational
burden of the semi-implicit step can rise signi�cantly in high-resolution models and the use
of highly e�cient numerical solvers is mandatory to maintain overall e�ciency of the semi-
implicit approach.
Local re�nement of the discretization grid can reduce the dimensions of the algebraic

problem to be solved and enhance the resolution where the solution is expected to have
larger gradients and more complex structure. Furthermore, many environmental applications
are concerned with large-scale phenomena that interact with �ner scale domain features. As
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typical examples of such problems, one may consider, e.g. modelling the Venice Lagoon
dynamics as fully coupled to the Adriatic Sea, or weather forecasting in Northern Italy when
a synoptic low is impinging on the Alps. Unfortunately, the matrix resulting of straightforward
�nite di�erence=�nite volume discretizations of the Helmholtz equation has a spectral condition
number that grows like the ratio of the largest to the smallest cell volume in the discretization
grid, as it can be shown directly by Gerschgorin’s circle theorem (see e.g. Reference [5]).
Thus, the convergence speed of standard iterative algorithms deteriorates rapidly.
In the present work, the cascadic conjugate gradient method (CCG) proposed by Deu�hard

in References [6; 7] will be applied to the semi-implicit discretization of the shallow water
equations in a multiple resolution framework. With this technique, for each re�nement level
an algebraic problem is solved for that level and all the coarser levels. This solution is used
as initial guess to compute the solution on a grid hierarchy including the next re�nement
level. For locally re�ned grids, CCG can be interpreted as a kind of multilevel preconditioner
that reduces e�ectively the high condition number of locally re�ned grids. It was shown in
Reference [7] that CCG can be even more e�ective than other multilevel preconditioners
(see e.g. Reference [8]). It was then proven in Reference [6] that this method achieves the
same computational complexity as classical multigrid methods, while using solvers based on
the conjugate gradient method. In the numerical scheme presented in this paper, the CCG
technique is coupled to an appropriate treatment of the coarse=�ne interface according to
the technique proposed in Reference [9]. The resulting scheme for the shallow water equa-
tions is locally and globally mass conservative. Furthermore, a symmetric, positive de�nite
and diagonally dominant matrix is inverted at each time step, using a solver with optimal
computational complexity. A number of idealized test cases have been carried out with this
numerical scheme, in order to assess its e�ective accuracy and computational cost. In all the
tests, rather extreme cases of typical wave propagation phenomena were considered. In partic-
ular, the applicability of the method with time-independent grid re�nement was studied, as it
is the case for typical environmental models of regions with complex bathymetry=orography.
Only very small interface e�ects were produced at the internal boundary between coarse and
�ne grids and correct solutions were obtained with time-independent grid re�nement, even
in cases with strong dynamical interaction of the di�erent grids. The expected computational
gain over standard conjugate gradient algorithms was clearly achieved, as well as the opti-
mal scaling of the computational cost for a given accuracy with respect to the total number
of gridpoints. Furthermore, the numerical scheme was able to reproduce correctly sharp fea-
tures of the solution due to irregular bathymetry, although employing exactly the same spatial
discretization at each hierarchy level.
Application of the cascadic approach to the problems reviewed above appears promising

also because, for these applications, the large-scale dynamics of the coarser grids is essen-
tially driving the �ner grids. Thus, it will be advantageous to start the �ner level iterations
from the coarser grid solution. On the other hand, all the grids interact dynamically and no
one-way nesting or nudging of the �ner grids into the coarser are performed. Another im-
portant feature of the CCG approach is that no special care appears to be necessary to allow
for irregular domains and strongly varying equation coe�cients. This could be a possible
advantage over the alternative choice with optimal computational complexity, i.e. multigrid
itself. The multigrid method has been successfully applied to semi-implicit or pressure pro-
jection algorithms for domains with simple geometries also using locally re�ned or adaptive
grids (see e.g. References [10–12]). However, in environmental problems such as coastal and
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mesoscale modelling, the computational domain itself can be rather di�erent at di�erent res-
olutions. Bathymetry and orography are described by irregular functions that depend strongly
on spatial resolution. Furthermore, if a conservative discretization of the continuity equation
is required, the resulting Helmholtz equation has coe�cients that depend on the free-surface
elevation at each time step. A convergence theorem for elliptic equations with such irregular
coe�cients was proven in Reference [13] for a variant of classical multigrid. Thus, it is surely
possible to apply multigrid to the environmental problems considered in this paper. On the
other hand, special coarse grid operators had to be developed for application of multigrid
techniques to problems with strongly varying coe�cients in homogeneization theory (see e.g.
References [14; 15]) and various problems are known to arise in multigrid applications to
highly inhomogeneous grids (see e.g. Reference [16]). Systematic comparison of the e�ective
accuracy and e�ciency of di�erent multigrid and multilevel techniques in such irregular cases
is certainly desirable, but beyond the scope of this paper. In the numerical experiments per-
formed, however, CCG appears to reproduce correctly sharp features of the solution without
need for any ad hoc treatment of the irregular equation coe�cients and source terms. Fur-
thermore, the CCG technique for models with structured Cartesian grids allows for fast and
e�cient extension of existing codes in a multiresolution framework.
The cascadic conjugate gradient method will be brie�y reviewed in Section 2. A multilevel

algorithm for the semi-implicit discretization of the shallow-water equations employing the
cascadic conjugate gradient on a hierarchy of discretization grids be will be presented in
Section 3. A detailed description of the treatment of coarse=�ne grid interfaces will be given
in Section 4. Numerical results obtained on idealized test cases will be presented in Section 5.

2. THE CASCADIC CONJUGATE GRADIENT METHOD

The cascadic conjugate gradient method has been proposed by Deu�hard [7] and fully analysed
by Bornemann and Deu�hard [6]. This approach to the solution of an elliptic problem is based
on the construction of the solution in a hierarchy of nested �nite-dimensional functional spaces
Xi; i=0; : : : ; l. These spaces are associated to nested discretization grids, so that X0 denotes
the space associated to the coarsest grid and Xi⊂Xi+1; i=0; : : : ; l− 1: At each level i of the
grid hierarchy, an approximate solution in Xi is computed by means of a conjugate gradient
solver. This solution is then used as the starting point for the iterations on the subsequent
level i + 1. It was shown in Reference [6] that this type of algorithm has, for a given
accuracy, the same computational complexity of the classical multigrid method, provided that
the number of iterations performed at each level is controlled in an appropriate way. More
speci�cally, an estimate of the discretization error at each level is employed, so as to stop the
iterative method as soon as the error in the solution of the algebraic system is approximately
the same as the discretization error. If this can be achieved, the computational cost of such
a procedure is O(Nl), where Nl is the number of gridpoints of the grid associated with the
largest functional space Xl at the �nest discretization level. The CCG algorithm can also been
implemented in an adaptive fashion, so as to re�ne the grid according to some re�nement
criterion where more resolution is found to be necessary. In a theoretical framework, CCG has
been applied to various types of elliptic problems (see e.g. References [17; 18]). Developments
of the technique more speci�cally aimed at realistic applications with problems analogous to
those outlined in Section 1 are presented in Reference [19].
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3. MULTILEVEL SEMI-IMPLICIT DISCRETIZATION OF THE SHALLOW
WATER EQUATIONS

The two-dimensional, vertically averaged shallow water equations can be written as
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where U and V are the vertically averaged horizontal velocity components in the x and y
directions, respectively, � is the free surface elevation with respect to an undisturbed water
level, h is the bottom depth with respect to the same level, g is the acceleration of gravity and
�=g

√
(U 2 + V 2)=�2, where � is a friction coe�cient and H=h+ � is the total water depth.

The advective form is chosen for the momentum equation, while conservation of the �uid
mass is required. In a typical semi-implicit discretization (see e.g. Reference [20]), the free-
surface gradients in Equations (1) and (2) and the velocities in Equation (3) are discretized
implicitly, while some explicit method is employed for the discretization of the advective
terms (semi-Lagrangian schemes are among the most e�cient choices for applications to
advection-dominated �ows, see e.g. Reference [21]). The unknown values of Un+1 and Vn+1

are then substituted into the Crank–Nicholson implicit time discretization of Equation (3)
in order to obtain a Helmholtz equation for the free-surface �; which can be written in the
simplest case as
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where all the explicit terms have been collected in the right-hand side Fn: Here, � is an
implicitness parameter which is required to be larger than 1

2 for stability. Once Equation (4)
has been solved, the values of Un+1 and Vn+1 are computed by direct substitution of �n+1 in
the discretization of Equations (1) and (2). As previously remarked, Equation (4) has to be
solved at each time step on rather irregular computational domains. In typical environmental
applications the equation coe�cients, the forcing and the resulting solution depend strongly
on spatial resolution. In order to discretize these equations on a locally re�ned grid, a solver
based on CCG has been developed for this type of problem, which is incorporated in a model
that discretizes Equations (1)–(3) on a hierarchy Gi; i=0; : : : ; l of nested, structured Cartesian
grids. Each grid is composed of square cells with C-grid staggering of the discrete variables. In
principle, these grids can be changed in time according to some adapting criterion, but for the
applications targeted at this stage, only time-independent grids will be considered. In order to
guarantee local and global mass conservation and to obtain a discretization of Equation (4) on⋃k
i=0Gi whose associated matrix is symmetric, positive de�nite and diagonally dominant, the

�nite volume method is applied and a �ux continuity condition is imposed at each coarse=�ne
grid interface along the lines of Reference [9]. A detailed description of the discrete �uxes
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employed at coarse=�ne interfaces is presented in Section 4. Numerical simulations presented
in Section 5 also show that this interface treatment allows to avoid spurious wave re�ection
at the internal �ner grid boundary.
For each time step n; the outline of the resulting multilevel discretization algorithm is the

following:

1. compute all the explicit terms on all grids Gi; i=0; : : : ; l
2. solve Equation (4) on

⋃l
i=0Gi by the CCG algorithm, i.e.

2.1. solve the discretization of (4) on G0 by the conjugate gradient method
2.2. for k=1; : : : ; l, use the solution on

⋃k−1
i=0 Gi as initial guess for the conjugate gradient

solution of the discretization of (4) on
⋃k
i=0Gi

3. for i=l − 1; : : : ; 1, obtain the values of � in the re�ned areas of Gi by averaging the
corresponding values computed previously on Gi+1

4. update velocities on all grids Gi; i=0; : : : ; l.

4. TREATMENT OF COARSE=FINE GRID INTERFACES

The discretization of Equation (4) at the coarse=�ne grid interfaces is an essential feature of
the method developed in this paper. In order to ensure mass conservation and good matrix
properties, the discretization approach described in Reference [9] for the Poisson equation is
employed, which amounts to require continuity of the mass �uxes at the boundaries of cells
along each coarse=�ne grid interface. For simplicity, the resulting discretization is described
here only in the case of an interface parallel to the y direction, so that only Equations (1)
and (3) will be involved in the derivation. Furthermore, advective terms and friction can be
omitted without loss of generality, thus resulting in the system
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For interface cells like those in Figure 1, the straightforward discretization of the free-surface
gradients yields O(1=�X ) errors, where �X denotes the cell spacing on the coarse grid. The
�ux continuous correction proposed in Reference [9] can be extended to the present case as

Figure 1. Interface between coarse and re�ned grid, from Reference [9].
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follows. First, unknown free-surface values �1; �2 are introduced at points 1, 2, respectively.
The �ux per unit length on the left-hand side of the coarse=�ne interface at point 1 is then
computed as

F1‘ =H1U1=H1
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The corresponding �ux on the right-hand side is computed as
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and continuity of the interface �ux is imposed by requiring that F1‘ =F
1
r ; which yields the

equation
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The analogous equation can be written for point 2 and the unknown values �1; �2 can be
computed as
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1
‘ can then be computed by substitution of these values in (7), thus yielding
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The �ux F2r =F
2
‘ can be derived analogously. From these formulas for the appropriate interface

�uxes, the matrix coe�cients for the interface cells can be derived. In the following, cell c
on the coarse grid (see Figure 1) will be denoted by indexes (I; J ); and in general all cells
belonging to the coarse grid will be denoted by capital indexes, while the cells a; b; on the
�ne grid will be denoted by (i; j + 1) and (i; j); respectively. The discrete equation for the
unknown value �n+1I; J can be written as resulting from the �nite volume discretization of (3),

�X�Y�n+1I; J =�X�Y�
n
I; J −�t

[
�Y
2
Fi+1=2; j +

�Y
2
Fi+1=2; j+1 −�YFI; J+1=2

]
−�t�X [FnI; J+1=2 − FI; J−1=2] (10)

Rewriting the �ne grid �uxes per unit length according to Equation (9) and assuming �=1
for simplicity, by substitution in (10) one obtains
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where �I; J denotes the right-hand side containing all the explicit terms. The discrete equa-
tion for the unknown values �n+1i; j ; �

n+1
i; j+1 can be derived analogously. Setting �x=�X=2,

�y=�Y=2; one obtains
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As in Reference [9], some conditions at the coarse=�ne grid interface must be required, in
order to achieve a system of equations for the unknowns �n+1 on the re�ned grid that is
symmetric, positive de�nite and diagonally dominant. By direct inspection of Equations (11)
–(13) it is easy to see that, for symmetry to hold, the condition

Hn
i+1=2; j=H

n
i+1=2; j+1=H

n
I−1=2; J

must be required, which can be interpreted as a consistency requirement for the total �uid
depths at the coarse=�ne interface. This condition is easy to enforce and does not imply any
restriction on the practical applicability of the resulting semi-implicit scheme. Another condi-
tion involving the �uid depths results from imposing strict diagonal dominance of the re�ned
grid matrix, which requires the coe�cient of �n+1i; j+1 in Equation (12) and the corresponding
coe�cient of �n+1i; j in Equation (13) to be negative, thus yielding in the condition

Hn
i+1=2; j¿3

�x2

�y2
Hn
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This inequality must hold along all the coarse=�ne interfaces. If a unity cell aspect ratio is
assumed, this condition is easily satis�ed in typical applications of shallow water models
to atmospheric �ows or coastal hydrodynamics. The only obvious exception are those very
shallow areas where wetting=drying of computational cells may occur and shallow �ats at
the very edge of much deeper channels. If care is taken in the grid re�nement strategy to
avoid placing re�nement interfaces in these quite peculiar areas, this condition is automatically
satis�ed and does not pose any restriction on the applicability of the numerical scheme.
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5. NUMERICAL EXAMPLES

Numerical tests have been carried out in idealized test cases in order to assess the accu-
racy, e�ciency and robustness of the algorithm described in Section 3. Semi-implicit time
discretization was performed along the lines outlined above for the equations:
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= −g@�
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− �U + Fu (14)
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= −g@�

@y
− �V + Fv (15)
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+
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Here, the advection terms have been neglected and non-homogeneous terms have been in-
cluded, so that arbitrary functions U;V and � can be assigned as the analytic solution of
Equations (14)–(16) by specifying appropriate non-zero Fu; Fv and F�: The results of tests on
the non-homogeneous equations with known analytic solution are presented in Section 5.1,
while in the other cases the forcing was assumed to be zero. It is to be remarked that all the
tests performed were aimed at understanding the model response in rather extreme cases of
wave propagation phenomena. In this way, the reliability of the model for potential applica-
tions to shallow-water problems can be assessed. The numerical experiments have focussed
especially on the purely numerical e�ects resulting from large-scale dynamical features cross-
ing time-independent coarse=�ne boundaries. In fact, time-independent grid re�nement would
be the rule in applications over complex bathymetries and absence of relevant spurious inter-
face e�ects is essential for the applicability of the method. A CCG solver was employed at
each time step to produce the solution on a hierarchy of uniform grids.
In order to mimic the typical setting of the applications targeted for use of this model,

the computational domain was represented by a box of sides Lx=Ly=10 km long. At the
boundaries, the mass �ux was assumed to be zero as well as the normal velocity components.
In most of the tests, a hierarchy of 4 re�nement patches was considered, with sides length of
5, 2.5, 1:25 km, respectively. The locally re�ned patches zoom down on the domain centre.
The spatial discretization step at the coarsest level was assumed to be �x(1)=�y(1)=500m.
The resolution was then doubled at each re�nement level, thus leading to �x(4)=62:5 m for
the �nest grid. The implicitness parameter was in general taken to be �=0:52: The CCG solver
was equipped with a simple implementation of the hierarchic termination criterion proposed in
Reference [6], where it was shown that use of such a criterion is essential in order to achieve
optimal operation count. According to this termination criterion, a tolerance �1 is prescribed
for terminating the CCG at the coarsest level k=1 at reasonable accuracy. The tolerance for
each level k=2; : : : ; l is then given recursively by

�k=�k−1 + Ek−1�‖�‖
[
�CGG
Ek−1

(
Nk
Nk−1

)1=d](d+1)=2

Here, d is the number of space dimensions of the elliptic problem that is being discretized,
‖�‖ is the magnitude of the solution in the energy norm induced by the elliptic operator,
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�∈ (0; 1) is a safety factor, Nk is the dimension of the discrete space Xk associated to the
discretization level k; �CCG is the relative accuracy that is required for the solution on the
largest discretization space Xl and Ek is an estimate of the relative approximation error for
the discretization of the elliptic operator in Xk . In all the tests performed here, �CCG=10−5

and �1=10−9, while the safety factor was given to be by �=0:3. The relative error was very
roughly estimated by Ek ≈ (�x(k))2 and ‖�‖≈Ld=2x : Furthermore, at each level k=1; : : : ; l the
resulting tolerance �k was rescaled with the norm of the right-hand side of the linear system to
be solved. Although extremely simpli�ed and only heuristically based, this implementation of
the termination criterion was found to be e�ective in order to achieve the theoretical estimate
for the computational cost of the CCG solver, see e.g. Figure 4. Use of more appropriate and
more accurate estimates of the space and time-discretization error (see e.g. Reference [22])
would be advisable for a more general and robust implementation of the CCG solver.

5.1. Analytic solutions of the inhomogeneous equations

In order to estimate the discretization error of the proposed method, the solution of Equations
(14)–(16) was taken to be given by U=U0 sin(!t) sin

2(2�x=Lx) cos(2�y=Ly), V=V0 sin(!t)
sin2(2�y=Ly) cos(2�x=Lx), �=�0 + �1 cos(!t) cos2(2�x=Lx) cos2(2�y=Ly). The lengthy expres-
sions of the appropriate F�; Fu, and Fv are omitted here. h and � were taken to be equal to
zero. Clearly, local re�nement does not make much sense for such a low wavenumber so-
lution pattern. However, the aim of the test is to show that the interface treatment does not
introduce extra discretization errors in a most unfavourable case. If the same test is repeated
with solutions that have sharp peaks in the re�ned grids, the expected signi�cant error re-
duction is observed. The values �0=5m and �1=0:5m were prescribed for the reference sea
level and amplitude of the free-surface oscillations, along with U0=V0=1m s−1. This results in
a maximum value of

√
gH=7:35m s−1 for the gravity wave celerity. The frequency was given

to be by !=1:775 × 10−3 s−1, which corresponds to an oscillation period T of about 1 h.
The time step was taken to be �t=T=40=90 s, thus resulting in maximum one-dimensional
Courant numbers (

√
gH�t)=�x(4)=10:58; (U0�t)=�x(4)=1:44, respectively. The behaviour

of the resulting l∞ and l2 absolute errors with respect to the analytic solution for the free-
surface elevation are displayed in Figure 2. These errors were computed in a 10T long run
on the variable resolution computational grid. The errors on the computed values of � have
comparable values in the two error norms, thus hinting that rather uniformly distributed errors
arise, while the errors on velocity appear to be more localized. It can be observed that, in
spite of the rather extreme features of the solution, the l∞ error always remained below 2cm,
which is just above the typical magnitude of tidal gauge errors.
The l∞ absolute errors for the free-surface elevation are compared in Figure 3 to the l∞

errors of the corresponding computation performed with the same time step on a single uniform
resolution grid with �x=�x(1): It can be observed that, for this low wavenumber solution,
the dominant error component in the computation on the multilevel hierarchy is due to the
coarsest grid level. On the other hand, no O(1=�x(i)) errors arise as a result of the appropriate
interface treatment. This test in which a known analytic solution is available was also used
to estimate the CCG solver performance and compare it to the performance of a standard
preconditioned conjugate gradient (PCG) solver. For the comparison, a simple PCG solver
with diagonal preconditioning was employed, which performs very e�ciently on uniform grids.
In Figure 4 the normalized computational cost Cl=(

∑l
i=1 IiNi)=Nl; of a CCG matrix inversion
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Figure 2. l∞ and l2 errors with respect to the analytic solution for the free-surface
elevation on the 4 levels grid hierarchy.

Figure 3. l∞ errors for the free-surface �eld on the coarsest grid vs errors on the 4 levels grid hierarchy.

is displayed for computations on grid hierarchies with 1–5 levels. Here, Ik denotes the number
of iterations of the CCG solver on

⋃k
i=0Gi and Nk the number of gridpoints of the same grid.

The number of iterations is averaged over a large number of timesteps in order to account
for the time evolution of the solution pattern. As a comparison, the number of iterations for a
standard PCG solver on the same grid hierarchy is also shown. The analytic solution was used
in order to compare iteration counts that lead to approximately equal errors in the solution.
It can be seen that the two comparable indicators of computational cost di�er substantially
already with 3 re�nement levels. For 4 re�nement levels, the computational cost of PCG is
more than double of CCG. For 5 re�nement levels PCG essentially does not converge any
more, even if a maximum iteration number above 2000 is allowed. Furthermore, it can be
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Figure 4. Computational cost Cl of CCG solver on multilevel hierarchies,
normalized with number of gridpoints.

observed that the computational cost Cl of CCG is approximately constant, according to the
theoretical estimates of Reference [6].

5.2. Outcoming waves

In order to show how the discretization algorithm outlined in Section 3 allows for full
dynamical interaction between the grids at various resolutions, without any relevant spuri-
ous e�ects at the grid interfaces, propagation of a strong gravity wave was simulated in
the square closed basin described above. The initial datum for the free surface was given
by �=�0 + �1 cos2(�d(x; y)=(2	)), where d(x; y)=

√
(x − Lx=2)2 + (y − Ly=2)2, �0=20 m,

�1=2 m and 	=1500 m were prescribed. The bathymetry and the initial velocities were
taken to be zero, while the Ch�ezy friction coe�cient was taken to be �=50 m1=2 s−1. The
time step used was �t=10 s; which amounted to a maximum one-dimensional Courant num-
ber (�t=�x(4))

√
gH=2:35. In Figure 5(a), the free-surface elevation is shown as computed

on the coarsest grid of the 4 levels grid hierarchy at time t=200 s, while in Figure 5(b) the
same result is shown as computed at the same time on the grid at re�nement level 3. It is to
be reminded here that, in all the tests, the values of � in the re�ned areas of a level i grid
are obtained at each time step by averaging the values on the corresponding 4 cells at level
i+1. It can be seen that the wave is free to propagate through the various discretization grids
and that no spurious wave re�ection takes place at the grid interfaces. No analytic solution is
available in this case, but the computed solution compares well with the solutions obtained
on a single grid at either the coarsest or the �nest resolution, shown in Figures 5(c) and 5(d),
respectively. Furthermore, it can be observed that the main wave travels at the correct speed√
gH , where H is taken to be the total �uid depth at the initial time.

5.3. Free oscillations over rough bathymetry

In order to check the robustness of the model in handling rough bathymetries, free oscillations
were computed in the case of free oscillations over a very steep bathymetry pro�le. As
remarked in Section 1, it will be seen that the local grid re�nement does in fact allow to
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Figure 5. Free-surface elevation at time t=200 s computed on: (a) coarsest grid of 4 level hierarchy,
(b) grid at third re�nement level, (c) single grid at resolution �x(1); (d) single grid at resolution �x(4).

Contour intervals of 5 cm.

reproduce small scale phenomena that are unresolved on the coarse grid. This is achieved
without introducing ad hoc spatial discretizations on the coarser grids. The bathymetry was
given by the function h(x; y)=h0 − h1 cos2(�d(x; y)=(2	)); where

d(x; y)=
√
(x − Lx=2)2 + (y − Ly=2)2;

h0=0, h1=5:3 m 	=1000 m. It can be observed that the support of this function is only
2�x(1) wide on the coarsest grid, while it is 16�x(4) on the �nest. The initial value for �
was given by �=�0 + �1x+ �1y, where �0=5 m, �1=5=Lx=5=Ly, while the initial velocities
were taken to be zero and the Ch�ezy friction coe�cient was taken to be �=50 m1=2 s−1.
Furthermore, the smallest total �uid depth on the coarsest grid at the initial time is about
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Figure 6. Free oscillations over steep bathymetry, free-surface computed at time t=2000 s on: (a)
coarsest grid of 4 level hierarchy, (b) �nest grid of 4 level hierarchy. Contour intervals of 6:5 cm.

35 cm, while on the �nest a tiny island emerges, represented by a few gridpoints on top of
the peak. The time step used was �t=20 s, which amounted to maximum one-dimensional
Courant numbers (�t=�x(4))

√
gH=2:24; (�t=�x(4))U=0:64, respectively. In Figure 6(a),

a detail of the free-surface elevation �eld is displayed, as computed on the coarsest grid at
time 2000 s. In Figure 6(b), the same result is shown as computed on the �nest grid. At this
time a large-scale wave has just swept over the tiny island and surface gravity waves in the
lee of the peak can be observed, which are completely unresolved on the coarsest grid, thus
showing that this type of approach is, in fact, robust enough to handle rough bathymetries.

6. CONCLUSIONS AND FUTURE DEVELOPMENTS

The cascadic conjugate gradient method has been applied to the Helmholtz equation obtained
in semi-implicit discretizations of the shallow-water equations. It has been shown how CCG
can be e�ciently incorporated into a model for the solution of the shallow-water equations on
a multilevel grid hierarchy. The resulting numerical scheme allows to achieve full dynamical
interaction of all the re�nement levels, as well as local and global mass conservation on
the locally re�ned grid. The accuracy and e�ciency of the resulting method were tested in
a number of idealized wave propagation test cases. Further work is necessary in order achieve
an optimal stopping criterion for the application of CCG to time dependent problems, but
a simple implementation of the criterion proposed by Bornemann and Deu�hard has been
shown to be su�cient to obtain great performance improvements with respect to standard
conjugate gradient solvers. A two-dimensional multilevel shallow-water model employing the
techniques outlined is currently under development for applications to river hydraulics, as
well as long term simulations of pollutant and sediment transport in the Venice Lagoon. The
CCG approach will also be applied to the semi-implicit discretization of fully compressible
atmospheric models for mesoscale weather forecasting. In all these cases, models using CCG
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on a hierarchy of structured Cartesian grids can be developed with modest programming
overhead from previously existing models.
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